A Proton and Boron-11 NMR Study of Icosaborane Oxide, B₂₀H₂₆O

JOHN D. KENNEDY and NORMAN N. GREENWOOD

Department of Inorganic and Structural Chemistry, University of Leeds, Leeds LS2 9JT, U.K. Received April 27, 1979

Selective ¹H-{¹¹B} NMR spectroscopy is a powerful tool for investigating the ¹H spectra of the higher boranes and their derivatives, and is used together with simple-pulse and 'partially relaxed' ¹¹B and ¹¹B-{¹H} spectroscopy to assign the ¹H and ¹¹B spectra of icosaborane oxide and to confirm its structure as 6,6'- μ -oxo-bis(nido-decaboranyl), (B₁₀-H₁₃)₂O. The observed ¹H shieldings parallel those for the nuclei of the boron atoms to which they are bonded, and also exhibit large changes upon dissolution in aromatic solvents. Boron-11 spin-lattice relaxation times T₁ at 23 °C in CDCl₃ solution are also reported and briefly discussed.

Introduction

The application of ¹¹B NMR spectroscopy has been central in the development of cluster boron hydride chemistry [1, 2], and many techniques such as very high field spectroscopy [3-15], together with ¹¹B-{¹H} and ¹¹B-{¹¹B} multiple resonance [3, 4, 11, 12, 16, 17], 'partial relaxation' [4, 8, 9], analysis of relaxation rates [18], line-narrowing [5, 7, 8, 10] and deuterium substitution [3-7] have been used to assign the ¹¹B spectra of known boranes and their derivatives, and to elucidate the structures of unknown ones. By contrast, the ¹H NMR behaviour of the higher boranes and their derivatives remains essentially uninvestigated, principally because of spectral complexity. In general, each proton resonance is at least a quartet of very broad lines arising from electron-mediated spin-spin coupling and scalar relaxation associated with ¹¹B (natural abundance 80%; spin quantum number I = 3/2), with additional lines arising from the presence of ¹⁰B (natural abundance 20%; I = 3). It is therefore often difficult to analyse the ¹H NMR spectrum of even a relatively small borane which will typically be a non-degenerate combination of many such multiplets. Thus, although the assignment of the ¹H spectrum of the important C_{2v} boron hydride, nido-decaborane, B₁₀H₁₄, was established some 15 years ago by a simulation technique [19] and subsequently confirmed by high-field spectrometry together with specific deuteration [20],

Fig. 1. Normal (upper trace) and 'partially relaxed' (lower traces) 32 MHz ¹¹B-{¹H(broad band)} NMR spectra of B₂₀-H₂₆O in CDCl₃ solution at 23 °C. These clearly differentiate the resonances at +7.2, +5.6, and +3.0 ppm.

the ¹H spectra of its many (less symmetric) derivatives remain unexamined. We have now found that selective ¹H-{¹¹B} double resonance NMR spectroscopy is a powerful tool for the investigation of these ¹H spectra, and report here as a preliminary example the results of ¹¹B, ¹¹B-{¹H} and, in particular, selective ¹H-{¹¹B} NMR experiments on icosaborane oxide, B₂₀H₂₆O [21]. These establish and assign the ¹H chemical shifts, and confirm the previous tentative conclusion [22] that the structure is that of 6,6'-bis-(*nido*-decaboranyl) oxide, (B₁₀-H₁₃)₂O.

Results and Discussion

Reasonable chemical deduction and the method of preparation suggest that $B_{20}H_{26}O$ is a bis(*nido*-decaboranyl) oxide, $(B_{10}H_{13})_2O$ [21, 22]. A projection of the *nido*-decaboranyl deltahedral skeleton is given in (I).

δ(¹H)(B₁₀H₁₄)(CDCl₃)^c

 $T_{1}^{(11}B)(CDCl_{3})/ms^{b} - {}^{1}J^{(11}B_{-}^{1}H)/Hz - \delta {}^{(1}H)(CDCl_{3})^{c} - \delta {}^{(1}H)(C_{6}D_{6})^{c} Relative - \Delta \sigma (B_{20}H_{26}\Omega)^{d} - \Delta \sigma (B_{10}H_{14})^{d} + D_{10}^{(11)}H_{14}\Omega (B_{10}H_{14})^{d} + D_{10}^{(11)}H_$

TABLE I. Proton and Boron-11 NMR Data for $B_{20}H_{26}O$ at 23 [°]C.

Relative Intensity

δ (¹¹ B)(C₆ D₆)^a

δ(¹¹ B)(CDCl₃)⁴

Assignment

In unsubstituted nido-decaborane, B₁₀H₁₄, there are terminal hydrogen atoms on each boron atom, and there are bridging hydrogen atoms in the (5, 6), (6, 7), (8, 9) and (9, 10) positions. The 32 MHz ¹¹B-{¹H-(broad band)] NMR spectrum of B₂₀H₂₆O is a 1:1:2:5:1 pattern (Fig. 1, uppermost trace), with some asymmetry of the peak with relative intensity 5. 'Partially relaxed' spectra [8] obtained using the $180^{\circ} - \tau - 90^{\circ}$ pulse sequence showed that the latter peak consisted of 3 resonances (Fig. 1, lower traces), for which the relative 'completely relaxed' intensities I_{∞} were estimated using the expression $I_{\tau} = I_{\infty} [1 - 1]$ $2\exp(-\tau/T_1)$]. The 1:1:2:2:2:1:1 intensity pattern thus established (Table I) is consistent with either 2- or 6-substitution on nido-decaborane, and consideration of the known [12] assignments for the 2- and 6-halogenodecaboranes B10H13X indicates 6substitution. The signs of the substituent chemical shifts [12] are as those for 6-chlorodecaborane, but their magnitudes are greater, as expected from the greater inductive effects of the oxygen atom. Consistent with this structural conclusion, the resonance at $\delta(^{11}B) = +21.8$ ppm ascribed to the B(6) nucleus is a singlet in the absence of ¹H decoupling, whereas all the other ¹¹B resonances are doublets arising from couplings ${}^{1}J({}^{11}B{}^{-1}H) = ca.$ 150 Hz. The oxygen linkage is therefore in the 6,6' position, which confirms the previous conclusions [21, 22] based on chemical evidence and lower resolution ¹¹B NMR spectroscopy.

The $180^{\circ} - \tau - 90^{\circ}$ pulse-sequence experiments also yielded values for the spin-lattice relaxation times T_1 for the quadrupolar ¹¹B nuclei, and these are given in Table I for a solution in CDCl₃ at 23 °C. T_1 for a quadrupolar nucleus depends on the electric field gradient at the nucleus and on the rotational correlation time τ_c . In principle therefore T_1 measurements offer an insight into either or both of these factors. However, since B₂₀H₂₆O is a very asymmetric rotor the molecular (including intramolecular) motion will be anisotropic and thus the effective τ_c will vary substantially throughout the molecule. The significance of the relative T_1 values is therefore difficult to assess. However, it is of interest that those for the oxygensubstituted B(6) and equivalent unsubstituted B(9)positions are very similar, and also that the low value for B(4) compared to that for B(2) may imply that B(4) lies very close to a principal rotational axis, possibly that associated with rotation about the oxygen-B(6) bond.

The 100 MHz ¹H NMR spectra of $B_{20}H_{26}O$ are complex (Fig. 2), but simplify considerably upon high power simultaneous broad-band irradiation at

			Intensity	4				Intensity			J	I
+	21.8 +22.	l.	1	6.8	I	ī	I	I		01.01	<i>D. 1</i>	ם
6	+7.2 ^e +8.	.0 ^e	1	7.8	145 ± 10	+3.91	+3,48	1	+0.43	+0.39	C0.5+	K.
1,3	+5.6 ^e +5.	.6 ^e	2	17.1	145 ± 10	+3.29 ^e (f	+3.70	2	-0.41	-0.40	+3.69	nn
8,10	+3.0 ^e +2.	.4 ^e	2	7.3	145 ± 10	+3.17 ^e)	+3.20	2	-0.03^{h}		ea	рÅ
5,7 -	10.7 -10.	6.	7	10.2	150 ± 10	+2.45	+2.56	2	-0.11	+0.0+	y	ν.
	33.2 -33.	Ŀ	1	32.8	155 ± 10	+1.34	+1.70	1	-0.36		2 <i>n</i> (y 10 -
4	42.5 42.	4.	1	11.3	155 ± 10	+0.32	+0.71	1	-0.39	1 4 7	C0.0+	41
μ-(5,6) & (6,7) –	i		I	1	I	-0.45 ¹	-0.83	2	+0.38 (07.01	V. 1	ν.
µ-(8,9) & (9, 10)	ł		I	I	I	-1.72 ⁱ	-2.35	2	+0.63 (±0.07	tl'7-	N
^a In ppm ± 0.4 to hi rather than CDCl ₃ . −0.53 (see footnote selective sharnering	gh frequency of [BF ₃ (^e Overlapping resonan f). ^h May be +0.09 when 4 9 and 8 10 ¹¹ R r	(OEt ₂)]. (ces in both (see footno	b±15%; th ¹¹ B and ¹ H te f). ¹ / settions irre	le ratio of T ₁ values is mor l spectra separable by 'part Assignment tentative; base	e accurate than this ially relaxed' spectr d on apparent selec	. ^c In ppm ± 0.0 oscopy. ^f Both tive sharpening v	02 to high frequ ¹¹ B and ¹ H res when 2,6 or 5,7	uency of inter conances too c ¹¹ B resonance	nal SiMe4. tose for the s e positions ir	^d Change in nuclear <i>shie</i> elective ¹ H-{ ¹¹ B} results radiated. ^J Assignment	<i>Iding</i> on dissolution in $C_6 D_6$ and $D_6 D_6$ to be conclusive. ⁸ May be to tentative; based on apparent	Greenwood
	· - · · · · · · · · · · · · · · · · · ·										!	1

Fig. 2. Normal (upper trace) and, at reduced spectrometer gain, ¹¹B-decoupled (lower trace) 100 MHz ¹H NMR spectra of $B_{20}H_{26}O$ in CDCl₃ solution at 23 °C.

Fig. 3. 100 MHz ¹H-{¹¹B} NMR spectra of B₂₀H₂₆O in C₆D₆ solution at 23 °C: (A) with 'broad band' ¹¹B irradiation and (B-G) with selective decoupling of the ¹¹B resonances at δ (¹¹B) = -42.4 (B), -33.1 (C), -10.9 (D), +2.4 (E), +5.6 (F) and +8.0 (G) ppm.

the ¹¹B resonance frequencies (Figs. 2 and 3). In the ¹H-{¹¹B(broad band)} spectra the multiplicities of the compound peaks at $\delta(^{1}H)$ ca. 3.2 (CDCl₃ solution) and 3.6 ppm (C₆D₆ solution) and the chemical shifts of their components were again readily obtained using the 'partially relaxed' technique (Table I). The two resonances of relative intensity 2 at extreme low frequency (*i.e.* 'high field') are reasonably ascribed [2] to the bridging hydrogen atoms and the correspondence between the ¹¹B and ¹H resonance lines for the remaining protons was established by selective ¹H-{¹¹B} experiments using unmodulated ¹¹B frequencies and smaller irradiation power levels than were required for complete

Fig. 4. Plot of $\delta(^{11}B)$ versus $\delta(^{1}H)$ for $B_{20}H_{26}O$ in CDCl₃ solution at 23 °C; slope = ca. 16.

¹¹B decoupling (Fig. 3). In these experiments the selective decoupling of the proton resonances at $\delta(^{1}H) = +3.70, +3.48 \text{ and } +3.20 \text{ ppm associated with}$ the ¹¹B resonances at $\delta(^{11}B) = +5.6$, +8.0 and +2.4 ppm respectively (C₆D₆ solution) is of particular interest since the effective resolution of the boron-11 spectrum by observation of the proton spectrum with selective ¹¹B decoupling was greater than that achieved by direct observation of the ¹¹B spectrum itself (Fig. 1) at the same field strength. By contrast, the relative assignments of the two well-separated resonances of the bridging protons in the (5, 6)(6,7) and (8,9) (9,10) positions was not certain, since each was associated with two ¹¹B resonance positions and it was difficult to establish any differential sharpenings and distinguish them from off-resonance effects.

These results are summarized in Table I. The most striking feature about the measured shieldings of the terminal protons is their correlation with the nuclear shieldings of the boron atoms to which they are attached (Fig. 4). This behaviour is consistent with many of the hypotheses regarding diamagnetic and 'paramagnetic' shielding in deltahedral boron hydride cages, but unfortunately it is difficult to see how it can distinguish between them. Also interesting are the large solvent effects on dissolution in the aromatic solvent C_6D_6 , and it is convenient to note at this point that the previously reported [20] (1,3)and (6, 9) proton chemical shift assignments for *nido*decaborane in C₆D₆ solution are incorrect and should be interchanged. For B20H26O and B10H14 the changes in proton shielding $\Delta \sigma$ upon replacement of $CDCl_3$ as solvent by C_6D_6 are also given in the Table; the magnitudes and signs of $\Delta \sigma$ are similar for both compounds indicating that the electronegative substituent does not stabilize any transient aromatic π -complex to any appreciably greater extent.

Experimental

Icosaborane oxide, $B_{20}H_{26}O$, was prepared from $[B_{10}H_{12}(SMe_2)_2]$ and H_2SO_4 as described in the

literature [21]. The pulsed (Fourier transform) NMR experiments were carried out on saturated solutions using a JEOL FX-100 instrument. Chemical shifts are quoted to high frequency (low field) of the reference standards BF3.Et2O (11B) and SiMe4 (¹H). 'Partially relaxed' (PRFT [8]) spectra were obtained using the $180^{\circ}-\tau-90^{\circ}$ pulse sequence; 180° and 90° pulse-widths measured for the samples used were 32 and 16 μ s respectively for ¹¹B at 32 MHz and 26 and 13 µs respectively for ¹H at 100 MHz. Boron-11 T_1 values were obtained using semi-logarithmic plots for the isolated resonances, and from an estimation of τ_{null} values for the overlapping resonances; this latter method was calibrated against the semilogarithmic plot method using the isolated resonances. Within experimental error, the T_1 values obtained in the ¹¹B-{¹H(broad band)} and in undecoupled ¹¹ B experiments were identical,

Acknowledgements

We thank the S.R.C. for an equipment grant and Dr. Spalding (previously of this Department and now at the University of Cork) for a sample of $B_{20}H_{26}O$ used in some initial experiments.

References

1 G. R. Eaton and W. N. Lipscomb, NMR Studies of Boron Hydrides and Related Compounds', Benjamin, New York (1969).

- 2 S. G. Shore, in 'Boron Hydride Chemistry', ed. E. L. Muetterties, Academic Press, New York and London (1975) pp. 94-113.
- 3 A. R. Siedle, G. M. Bodner and L. J. Todd, J. Inorg. Nucl. Chem., 33, 3671 (1971).
- 4 R. R. Rietz, A. R. Siedle, R. O. Schaeffer and L. J. Todd, *Inorg. Chem.*, 12, 2100 (1973).
- 5 A. R. Siedle, G. M. Bodner, A. R. Garber and L. J. Todd, Inorg. Chem., 13, 1756 (1974).
- 6 W. F. Wright, A. R. Garber and L. J. Todd, *J. Magnetic Resonance*, 30, 595 (1978).
- 7 A. R. Siedle, G. M. Bodner, A. R. Garber, R. F. Wright and L. J. Todd, J. Magnetic Resonance, 31, 203 (1978).
- A. Allerhand, A. O. Clouse, R. R. Rietz, T. Roseberry and R. Schaeffer, J. Am. Chem. Soc., 94, 2445 (1972).
 R. R. Rietz and R. Schaeffer, J. Am. Chem. Soc., 95,
- 4580 (1973). 10 A. O. Clouse, D. C. Moody, R. R. Rietz, T. Roseberry
- and R. Schaeffer, J. Am. Chem. Soc., 95, 2496 (1973). 11 R. F. Sprecher and J. C. Carter, J. Am. Chem. Soc., 95,
- 2369 (1973). 12 R. F. Sprecher, B. E. Aufderheide, G. W. Luther and J. C.
- 12 R. F. Sprecher, B. E. Aufderheide, G. W. Luther and J. C. Carter, J. Am. Chem. Soc., 96, 4404 (1974).
- 13 D. A. Thompson, W. R. Pretzer and R. W. Rudolph, Inorg. Chem., 15, 2948 (1976).
- 14 D. A. Thompson, T. K. Hilty and R. W. Rudolph, J. Am. Chem. Soc., 99, 6774 (1977).
- 15 R. N. Leyden, B. P. Sullivan, R. T. Baker and M. F. Hawthorne, J. Am. Chem. Soc., 100, 3758 (1978).
- 16 R. J. Remmel, H. D. Johnson, I. S. Jaworiwsky and S. G. Shore, J. Am. Chem. Soc., 97, 5395 (1975).
- 17 N. N. Greenwood, J. D. Kennedy, J. Staves and K. R. Trigwell, J. Chem. Soc. Dalton, 237 (1978).
- 18 R. Weiss and R. N. Grimes, J. Am. Chem. Soc., 99, 1036 (1977).
- 19 R. L. Williams, N. N. Greenwood and J. H. Morris, Spectrochim. Acta, 21, 1579 (1965).
- 20 G. M. Bodner and L. G. Sneddon, *Inorg. Chem.*, 9, 1421 (1970).
- 21 J. Plešek, S. Heřmánek, and B. Štíbr, Coll. Czech. Chem. Comms., 32, 1095 (1967).
- 22 P. Sedmera, F. Hanousek, and Z. Samek, Coll, Czech. Chem. Comms., 33, 2169 (1968).